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This paper considers the dynamics of a gas bubble in response to either a pressure 
pulse or a pressure step a t  t = 0, both in the presence and absence of a mean flow. Our 
work utilizes small-deformation, domain perturbation analysis carried to  second and 
higher order in the amplitude of deformation, E .  I n  the absence of a mean flow, our 
analysis of the small deformation problem for an initial im,pulsive perturbation of the 
bubble volume and shape is closely related to recently published work by Longuet- 
Higgins on the time-dependent oscillations of an initially deformed bubble in a 
quiescent fluid. However, in the presence of a mean flow which deforms the bubble, 
the bubble response to pressure changes is more complex. Specifically, the present 
analysis identifies a number of different mechanisms for resonant interaction 
between shape deformation modes and the volume or radial breathing mode of 
oscillation. This includes not only a fundamental change in the resonant interactions 
a t  O ( 2 )  -where resonant interaction is also found in the absence of mean flow - but 
resonant interactions also a t  the level of O($) which are not present without the mean 
flow. On the other hand, the bubble dynamics in response to a step change in the 
pressure distribution in a quiescent fluid exhibits similar resonant interactions a t  
O(e2) to those obtained for a pressure pulse in the presence of mean flow because the 
bubble oscillates around a non-spherical steady-state shape owing to the non- 
uniform pressure distribution on the bubble surface in both the cases. 

1. Introduction 
We consider the dynamic response of a bubble to rapid changes in the pressure 

distribution a t  the bubble surface, when the bubble is immersed in an inviscid fluid 
that is either quiescent, or undergoing a steady uniaxial (axisymmetric) straining 
flow. The deformation of bubbles and drops driven by time-dependent acoustic 
radiation pressures has been widely studied to  investigate such related problems as 
the fragmentation of oscillating bubbles by instability of the spherical shape, 
emulsification, and sound propagation in bubbly liquids (cf. Y osioka & Kawasima 
1955; Marston & Apfel 1979; Marston 1980; Prosperetti 1984, and others). To 
describe the bubble oscillations in response to a modulated acoustic pressure on the 
interface, the disturbance flow field must be determined with the acoustic radiation 
pressure incorporated in to the boundary conditions at the interface. Specifically, we 
employ the method of domain perturbations to investigate small-amplitude 

t Permanent address. Department of Chemicaal Engineering, Korea Advanced lnstitute of 
Science and Technology, Taejon 505-701, Korea 
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oscillations of bubble shape and volume, relative to the steady-state configuration in 
the mean flow. Although the recent development of numerical techniques (e.g. Miksis 
1981; Ryskin & Leal 1984; Bach & Hassager 1985; Kang & Leal 1987) has been a 
very important advance for this type of free-boundary problem, numerical solutions 
alone are not sufficient because they give only a lumped global picture of the bubble 
motion. To understand the details of oscillatory motion such as the modal 
frequencies or the possibility of mode-mode energy transfer mechanisms, we need a 
complementary analytical study. 

Recently, a number of investigators have considered the free oscillations of shape 
of a compressible gas bubble in a quiescent fluid as a possible source of underwater 
sound (cf. Plesset & Prosperetti 1977; Hall & Seminara 1980; Prosperetti & Lu 1988; 
Longuet-Higgins 1989u-c, 1990, 1991 ; Benjamin 1989; Medwin & Beaky 1989; 
Ffowcs Williams & Guo 1991). Although the quiescent fluid problem is therefore of 
considerable intrinsic interest, many problems of practical significance involve 
bubble oscillations with a mean flow at infinity (cf. Subramanyam 1969; Kang & 
Leal 1988). For example, acoustic noise generation in bubbly liquids almost always 
involves oscillations of shape or volume with the bubble subjected to some non- 
trivial mean motion of the suspending fluid. 

The interactions between changes of bubble shape, changes of bubble volume, and 
the mean motion of the surrounding fluid will be shown below to lead to interesting, 
non-trivial effects. The most closely related existing analysis is due to Longuet- 
Higgins (1989a, 1991) who considered small-amplitude oscillations of an ideal-gas 
bubble that is initially non-spherical, in a quiescent fluid. In  this case, when the 
frequency of the radial ‘breathing ’ mode of oscillation is twice that of a normal P, 
mode of shape oscillation (i.e. oo = 2w,), there is a resonant interaction, and the 
breathing mode gains energy at the expense of the deformation mode, which 
eventually loses all of its energy to the radial mode. The resulting volume oscillations 
act as a monopole source of sound. 

In the present paper, we consider small amplitude oscillations of shape and volume 
for an ideal gas bubble that is subjected to an initial pulse or step change in the 
acoustic radiation pressure at the bubble surface. The inviscid suspending fluid? is 
assumed either to be initially quiescent or to undergo a steady uniaxial flow so that 
the steady-state bubble shape is non-spherical. We show that there will generally be 
mode-mode interactions between the radial and shape oscillations, and these 
interactions can exhibit resonance when the frequency of the radial mode wo is 
‘matched’ with one of the deformation modes. This leads to a slowly varying 
amplitude envelope for both types of modes and a strong transfer of energy from one 
type of mode to the other. Similar conclusions were reached by Longuet-Higgins. 
However, we find that the qualitative details depend critically upon the initial 

t In the real, physical system there are a number of mechanisms for energy loss, including 
viscous dissipation in the liquid, and these will damp both radial and shape oscillations. If the 
damping occurs on a timescale that is shorter than the slow timescale for modal exchange of energy, 
no resonant interactions will occur. This fact does not, however, minimize interest in an analytic 
assessment of the details of modal coupling for the inviscid or non-dissipative limit. A 
comprehensive study of damping effects requires numerical solution of the full Navier-Stokes 
problem - the common techniques of simply assigning an ad hoc damping term to the modal 
amplitude equations, or approximating viscous effects as occurring only at the bubble surface, do 
not seem to be justified (or justifiable) in the present case. It should also be noted that the long 
timescales characteristic of resonant interactions in the present work are a consequence of the small 
deformation approximation and will not be relevant to oscillations of finite amplitude All of these 
matters are currently being investigated. 
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conditions - i.e. whether the initial deformed shape occurs owing to a pressure pulse, 
a pressure step, or is simply imposed (as in Longuet-Higgins' case) in a quiescent 
fluid. Furthermore, the nature of the interaction and its strength is strongly 
dependent upon the presence or absence of the ambient extensional flow. In 
particular, we will show that the flow can interact directly with a deformation mode 
to  enhance the resonant energy transfer from shape to radial oscillation, and, in 
addition, it produces a self-induced secularity that leads to a modification of the 
oscillation frequencies. 

We begin, in $2, by formulating the governing equations and boundary conditions, 
and discussing the basic approach to the subsequent analysis. This is followed, in $3, 
by the steady-state shape for an ideal-gas bubble in an inviscid, axisymmetric 
extensional flow. In the first part of $4, we analyse the bubble response in a quiescent 
fluid to an impulse in the pressure at  the bubble surface. In the second part of $4, we 
determine the response in a quiescent fluid to a step change in pressure. Section 5 
then examines the bubble response to a pressure impulse when there is a steady mean 
flow. Our results are summarized in $6. 

2. Formulation of the problem 
We begin by considering the governing equations and boundary conditions for 

oscillations of a bubble owing to changes in the pressure distribution at the bubble 
surface. We assume that the fluid is inviscid with density p and that it is undergoing 
an axisymmetric, uniaxial straining flow far from the bubble.? In the absence of 
pressure fluctuations or external fluid motion, the pressure is uniform with a 
magnitude Po and the bubble is spherical with an equilibrium radius a. The surface 
of the bubble is assumed to be clean, mobile and characterized completely by a 
constant interfacial tension r. Finally, we neglect all effects of gravity including the 
hydrostatic pressure variation in the fluid. 

The governing equations appropriate to the problem described above, can be 
expressed in terms of the velocity potential q5 and the pressure field P 

vzq5 = 0, (2-1) 

34 -+i(V#)2+P at =Po,  

in which the variables are non-dimensional with respect to the characteristic 
variables: I, = a, t ,  = (a3p/r) i ,  4, = (Ta/p) i ,  and P, = T/a. 

The far-field boundary condition corresponding to the presence of an undisturbed 
extensional flow with the principal strain rate E can be expressed in terms of the 
second-order Legendre polynomial P2(q) 

# + + m  = +BY~P,(~)  as r + co, (2.3) 

where E is the Weber number, defined as E = p(Ea)2a/I'and 7 = cos 0 (see figure i for 

t Insofar as the analysis in this paper is relevant to understanding the bubble as a source of 
sound, it should be noted that the assumption of' incompressibility is only valid in the vicinity of 
the bubble. However, M noted by one of the reviewers, and outlined in A. P. Dowing & J. E. 
Ffowcs Williams (1983), as long as the bubble radius is small oompared with the wavelength of 
sound in the fluid (i.e. the bubble is a 'compact' source), the radiated pressure in the far field is 
precisely that calculated for an incompressible fluid, but with time being delayed so that t must be 
replaced by t -  (v-a) /c .  
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FIGURE 1. An oscillating bubble in a uniaxial straining flow. The x-axis of a cyliydrical coordinate 
system (2, u, p) is directed along the axis of symmetry and 1x1 = r = (ze + az)z. The strain-rate 
tensor E has the components Ez3 = @(36,,S,j-6,,) in the Cartesian coordinate system. 

the definition of the coordinate system). The bubble surface is specified in terms of 
spherical polar coordinates ( r ,  8, cp), by S: r -  1 -f(O,Cp, t )  = 0. The kinematic and 
dynamic boundary conditions on the bubble surface thus take the form 

P-P,  -A(e, cp, t )  +z+t(v$)z = v - n, (2 .5 )  

where P is the pressure inside the bubble and n is the unit outward normal at the 
bubble surface. The source of the oscillations in bubble volume and shape is a time- 
and spatially-dependent pressure a t  the bubble surface, represented in (2.5) as 
A (8, cp, t ) .  This type of surface pressure can be produced experimentally via modulated 
ultrasonic acoustic wave fields, without producing any net motion of the suspending 
fluid (cf. Yosioka & Kawasima 1955; Marston 1980). 

In addition to the differential equations (2.1) and (2.2) and boundary conditions 
(2.3)-(2.5), the solution for bubble shape must satisfy an additional constraint on 
bubble volume, the details of which depend on the properties of the bubble. If we 
assume that the bubble contains an ideal gas the pressure inside the bubble obeys the 
perfect gas law 

in which Po is the equilibrium pressure for a spherical bubble (i.e. po-Po = 2 for 
f = 0) and (( * ) )  denotes the spherical surface average of ( * ) .  The parameter y 
depends on the thermodynamic nature of the bubble oscillation. For an isothermal 
oscillation y is unity and for an adiabatic process y is the ratio of the specific heat 
capacities (y  = C,/C,; y = 1.4 for air). Otherwise y ranges between these two 
limiting values. 

The problem represented by (2.1)-(2.6) is, of course, both time-dependent and 
highly nonlinear. One complication is that the boundary conditions (2.4)-(2.5) must 
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be applied at  the bubble surface whose shape is unknown. In the present analysis we 
utilize the ‘domain perturbation ’ technique for the limit 

(2.7) 
I n  this technique, we approximate all quantities that are to be evaluated at  the 
surface of the deformed bubble, in terms of equivalent quantities evaluated a t  the 
undeformed spherical surface (i.e. f = 0) using a Taylor series expansion about 
f = 0, for E < 1. Hence, in effect, we replace the original problem, which has boundary 
conditions a t  the deformed surface, with an equivalent problem, for E < 1,  in which 
modified boundary conditions are applied a t  the surface of the undeformed 
(spherical) bubble. As a final simplification, we assume that the applied surface 
pressure-distribution A(8,p, t )  is axisymmetric [i.e. A = A(0, t ) ]  so that  the deformed 
shape of the bubble is also axisymmetric [i.e. f =f(e, t ) ] .  

Based upon the preceding discussion, the kinematic boundary condition (2.4) can 
be approximated for small E in the form 

A(8,$4, t )  = O(E) * O(1). 

(2.8) 
Furthermore, the curvature a t  the bubble surface can be expressed in terms off as 

V-n = 2 - 2j+ v:!+ 2j2 + 2 f ~ i f -  2j3- 3 f 2 ~ ~  f +  { E V : ~ +  7 ”f} (1  - 72)  (g)2 + o(j4)), 

where V,Z denotes the surface Laplacian 

all 
(2.9) 

(2.10) 

Now, for an ideal-gas bubble, the pressure inside the bubble is determined from 
the thermodynamic law (2.6). Thus, the dynamic boundary condition (2.5), obtained 
bp using the asymptotic form of (2.6) for f < 1 and the equilibrium condition 
(Po-Po = 2), can be expressed in the approximate form 

Here w,, is the natural frequency of the radial (or so-called ‘breathing’) mode of 
oscillation and is defined by - ~i = 3yP0-2. (2.12) 

I n  the present paper, we consider the small deformation limit e << 1. I n  this 
limit i t  can be easily seen from (2.2), (2.3), (2.7) and (2.8) that  $4 = O(d) and 
a$4/at = (i3$4/i3v)r=l = 0 at  O ( 6 ) .  Thus the form of the asymptotic solution that we 
seek is 

$4 = &b0 + E+i$ + €$4z + . . *), (2.13) 
r~ i + f =  1 + e f l + + ~ 2 + e 2 f 3 +  . . . ,  a t  XES. (2.14) 
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We now express the bubble shape function f i  at each order in ei as an infinite series 
of Legendre polynomials (i.e. surface spherical harmonics in an axisymmetric mode), 

(2.15) 

and the velocity potential at each order in ei in terms of solid spherical harmonics (i.e. 
eigensolutions of the governing equation (2. 1)). 

(2.16) 

(2.17) 

All that remains is to determine the coefficients aj,,(t) and bi,,(t) which satisfy the 
kinematic and dynamic boundary conditions, (2.8) and (2.11), at the bubble surface. 

In  the steady-state problem, for a bubble in the flow (2.3) but with A(O,rp, t )  = 0, 

Kang & Leal 1988), and it is straightforward to obtain a solution. We begin with a 
brief discussion of this steady-state case in the following section. 

the coefficients aj ,n  and bj-l,n are constant with az j ,n  = bz j - l ,n  = o  (j= 1 , 2 , . . * )  (cf. 

3. Steady-state solutions 
The leading-order approximation to the steady-state problem with A(t9, t )  = 0 is 

the well-known potential flow solution for extensional flow around the undeformed 
sphere (i.e. f * = 0) 

where the superscript s will be used hereafter to denote the steady-state solution. 
This solution exactly satisfies the kinematic boundary condition in the form (2.4). 
However, it cannot satisfy the dynamic boundary condition (2.5) for a spherical 
bubble; instead, there is a mismatch of O(e)  between the dynamic and capillary 
pressure distributions at the spherical surface. Thus, the bubble must deform, and we 
use the domain perturbation technique, summarized by (2.8)-(2.17), to obtain a 
solution. 

To obtain the asymptotic forms of the boundary conditions (2.8) and (2.11) for 
small B 4 1,  we introduce the expansions (2.13) and (2.14). Then, 4: given by (3.1) 
satisfies the leading-order form of the kinematic condition (2.8). The shape correction 
a t  O(e) (i.e. f f )  is obtained from (3.1) using the leading-order approximation to the 
dynamic boundary condition (2.11). In  particular, if we express f: in the form 

#: = (p+9-"4(7), (3.1) 

(see 2.15), then it follows from (2.11) that 

for an ideal-gas bubble, 
5 

0 for a constant-volume-bubble, 

25 5 
a : , z = 3 3 ~ ,  as ,*=- -  126' g,% = 0 
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It may be noted that the volume of an ideal-gas bubble is increased by O ( W ; ~ ~ )  from 
the equilibrium value in order to balance the ambient pressure change that is caused 
by the flow. 

The next term in the expansion (2.13) for p is O($),  and reflects the change in the 
flow owing to the change in bubble shape at O ( E ) .  The governing equation for 4; 
comes from the second term in the expansion of the kinematic condition (2.8), with 
& andfs given by (3.1) and (3.2). The resulting solution, expressed in the form (2.17), 
is 

in which 

P,o & = CbS,, n p+l ) 
n 

for an ideal-gas bubble, 
275 25 +- I- 9072 360; 

(3.3) 

b i . 2  = 
for a constant-volume bubble, 

325 bs  =-- 125 bS,,, = 0 (n =I= 2,416) .  
bi.4 = - 5544’ ’,‘ 4158’ 

Following the preceding analysis, the second correction a t  O(e2) to the bubble shape 
is then obtained from (2.11). For an ideal-gas bubble, the result can be expressed in 
the form 

in which 
25 { 67 11 37+5 3y-1 a:,o = ___ __-__-_______ 
144 9072 6 3 4  2w; wi 

mi, ll. = 0 (n =I= 0 , 2 , 4 , 6 , 8 ) .  
199075 2725 

39517632’ = 1 459 458 ’ 
a;,6 = - 

For a constant-volume bubble, the corresponding coefficients a:, (n = 0 ,2 ,4 ,6 ,8 )  
can be obtained by taking the limit u;-t cc in the above solution. Higher-order 
approximations for and f could be obtained by a straightforward continuation of 
the same procedure. However, the solution obtained above is sufficient for present 
purposes. 

If we summarize our results, we have shown that the shape function up to O(e2)  is 
given in the form 

(3.5) 

For the limiting case of a constant-volume bubble (i.e. 6~: + a), this solution is 
exactly the same as obtained by Miksis (1981) and Kang & Leal (1988). As noted in 
those earlier papers, the bubble shape is not ellipsoidal a t  the leading order of 
approximation, but exhibits a maximum radius a t  0 = in which clearly indicates a 
barrel-like shape. It can be seen from the present analysis that this rather surprising 
feature is independent of the compressibility of the bubble. 

The solution (3.5) alNo suggests the presence of a limit point a t  a critical Weber 
number E = t‘, for existence of steady solutions on the branch that includes the 

r = 1 + as, P, (7) + €2 2 a;, , P, (7) + o ( E 3 ) .  
n 12 
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E 

8 = 2 Cfsp,(r>> 

FIGURE 2. Perturbation solutions for steady-state shape as a function of the magnitude of the Pz 
mode of deformation 6. Also shown is the numerical solution of Miksis (1981) and Ryskin & Leal 
(1984) for ui --f a. 

spherical shape in the absence of a flow. Indeed, following Kang & Leal (1988), an 
estimate of the critical Weber number can be obtained by transforming the E -  

perturbation into a P2-perturbation in which the small parameter is the magnitude 
of the Pz(7) mode of deformation, 

6 = 2(fSP2(r)), (3.6) 
instead of 8. In  this way, the limit point which appears as a singular point on the 
stable solution branch at  a critical Weber number 6,  is transformed to a regular 
point, and we can determine the Weber number e as a function of 6 for both the 
unstable and stable parts of the solution curve. The result up to O(S2) can be 
expressed in the form 

& = c , s + c z s 2 + o ( ~ ) ,  (3-7) 

in which 

The critical Weber number, which occurs when a e / M  = 0, can thus be estimated as 

The critical value for a constant-volume bubble (i.e. w i +  00)  is 0.7480 which is 
identical to  the result obtained by Kang & Leal (1988). As noted in the earlier paper. 
this estimate of the critical Weber number at. which the stability of the solution 
branch is exchanged is substantially below the value 1.38 obtained numerically for 
an incompressible bubble by Miksis (1981) and Ryskin & Leal (1984). 

In  figure 2, the Weber number 6 is plotted as a function of S from equation ( 3 . 7 )  
for three values of ui = 4, 10 and 00. Also included for comparison is the numerical 
result of Miksis (1981) and Ryskin & Leal (1984) for a constant-volume bubble (i.e. 
wi -+ 00). Although the critical Weber number predicted by the P,-perturbation 
solution is considerably below the value obtained numerically, we can see that the 
general features of the solution are more or less the same. It can be easily seen from 
figure 2 that the maximum value of the Weber number for the existence of a stable 
steady-state solution is monotonically increased as w,, increases. (The critical value 
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for wT = 4 is E, = 0.3329, and the value for w; = 10 is ec = 0.4991.) Thus, the gas 
bubble becomes less stable as the compressibility increases owing to  the increased 
bubble volume that is required to balance the ambient pressure change indueed by 
the external mean flow. 

4. Small-amplitude oscillation of an ideal-gas bubble in a quiescent fluid 
I n  this and the following section we consider the oscillations of volume and shape 

that occur for an initially spherical, equilibrium bubble in response to an 
asymptotically small, but abrupt change in the ambient pressure distribution at the 
bubble surface. 

Longuet-Higgins (1991) considered the related problem in which an ideal-gas 
bubble exhibits a spontaneous shape oscillation, beginning at t = 0 with the fluid a t  
rest, and an initial perturbation in shape at O(e). The corresponding initial conditions 
expressed in terms of the coefficients a,,,(t) of the shape function (2.15) are 

Longuet-Higgins (1991) found, in this case, that  when the radial breathing mode has 
twice the frequency of a normal mode of shape deformation (i.e. q, = am,,), there is 
a resonant interaction at  O ( 2 )  and the breathing mode gains energy a t  the expense 
of the shape deformation mode. I n  fact, in the case considered by Longuet-Higgins, 
the shape deformation eventually loses all of its energy to the radial mode of 
oscillation. 

However, we shall see from the calculations below that the details of rnode-mode 
interactions can be quite different when the initial deformation process occurs as a 
consequence of an abrupt change in the 'radiation' pressure a t  the bubble surface 
rather than passively, as in the Longuet-Higgins analysis. I n  this section we consider 
small-amplitude oscillations of an ideal-gas bubble in response to both an impulsive 
change and a step change in this pressure. 

4.1. Impulsive response in a quiescent &id 
Let us begin by considering the bubble response in a quiescent fluid t o  an irnpdso in 
the pressure at  the bubble surface. For this case, the function A(@, t )  can be expressed 
in terms of the Legendre polynomials Pn(r) for an axisymmetric mode: 

A(fl,t) = cEA,S(t)Pn(r), (4.2) 
n 

where 4% is the impulse magnitude of the P,(y) mode and S(t )  is the Dirac-delta 
function. To begin with, it is obvious, in the absence of an external mean flow (i.e. 
$o = 0 in the solution (2.13)), that f2 ,  = & = 0 (j  = 1 , 2 , 3 , .  . .) in the expansions 
(2.13) and (2.14) and aZj,  .(t) = bZj ,  , ( t )  = 0 (j  = 1 , 2 , .  . .) in the normal forms of' 
(2.15)-(2.17). The equation of motion and boundary conditions for the linear 
approximation a t  O(E)  admit solutions in the form of normal modes 

(4.3) 
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for n = 0 , 1 , 2 , .  . . . Here, wo(n = 0 )  is defined in (2.12) for the radial mode of oscillation 
and w, is defined as 

for a deformation mode. Thus, the problem can be viewed as an initial-value problem 
with 

aJ,,(0) = 0, -al, .(0) = -(n+ l ) A n ,  -aj+l,n(0) = 0 (j = 1 , 2 , .  . .) (4.6) 

in a time-independent ambient pressure field (cf. (4.1) for the Longuet-Higgins (1991) 
problem). 

Consider now the second approximation which occurs at O ( 2 )  in the quiescent 
fluid. [In the presence of the linear extensional flow, the second approximation will 
be shown later to occur at O(d).] On substituting al, , (i.e. f,) and q51,n into the 
kinematic and dynamic boundary conditions (2.8) and (2,11), we have 

w i  = ( n - l ) ( n + l ) ( n + 2 )  (4.5) 

a a 
at at 

A: A2 

at2 4 4  40: a2a390 + w i  u3, = --{3(y + 2) w i  + 2(3y- 1)) cos 20, t +"-{3ywi + 2(3y - l)} 

for the amplitude of the radial mode of oscillation. A similar expression can also be 
obtained in a straightforward way for the amplitude of any of the deformation 
modes. It can be seen from (4.7) that  when wo = 2w, there are secular terms on the 
right-hand side, which indicate a resonant interaction between the radial mode and 
the P,(q)-mode of deformation. Since we expect bounded solutions for the various 
shape modes (recall that the pressure change is small, of O(s)), it is evident that the 
form of the solution (4.3) is overly simplified. I n  particular, to avoid the secularity 
a t  O ( 2 )  when wo = 2w, we must employ a two-timing expansion in which the 
amplitude and phase of the O(s) modes are assumed to exhibit a slow variation, 
superposed on the rapid oscillations described by (4.3) and (4.4). 

Before considering the details of the resonant case, however: let us first consider 
the solutions of (4.7) and (4.8) for the non-resonant case (wo =!= 2w,). In this case, 
solutions for u3, and b3, can be easily determined which satisfy the initial condition 
(4.6). The known solutions for u ~ , ~ ,  b j , o  ( j  = 1,3) can then be used to evaluate the 
corresponding pressure disturbance a t  large distances r using 

In particular, as r + co, we find 

or at 

rPm = do wo sin wo t+  c2 I )  w i  +4(3y- 1) )  cos wo t 

C O S ~ W , ~  as r-f co 1 (n  + 1 )  (4n- 1) - 
(2n+l)(wi-4w2,) 

(4.10) 
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It can be seen that the distortion mode a t  O ( E ) ,  without the radial mode of oscillation 
at  O ( E )  (i.e. with A, = 0) only emits a monopole-like contribution at O(e2) .  This 
contribution is due to the change in bubble volume. 

Two important conclusions can be drawn from the solution (4.10) when A ,  = 0 (i.e. 
the ambient pressure impulse has no radially symmetric component). First, the 
induced monopole pressure disturbance in this case has two oscillatory components ; 
one with the frequency of the zero-order breathing mode and the other with a 
frequency double that of the linear mode of deformation w,. Both of these terms have 
an amplitude proportional to the square of the intensity of the pressure impulse, A:. 
Secondly, if we examine the order of magnitude of these terms, we see that the 
amplitude can be surprisingly large, especially as w, +. 2w,. As shown previously in 
the closely related problem analysed by Longuet-Higgins, the mode-mode 
interactions in this limit become resonant, and we must employ a two-timing 
procedure to obtain a valid (bounded) solution. 

Let us then turn to the special case w, = 2w, in which the radial and P, 
deformation modes are in exact resonance. As we have already noted, secular terms 
appear in the governing equations at  O(e2), so that the solution at O(s) for this case 
must be expressed in the form of normal modes with a slowly varying amplitude, 

a1, n( t>  7 )  = i{al, n ( 7 )  exp (iwn t ) )  + c.c-9 (4.11) 

with 

(4.12) 

(4.13) 

(In (4.11) and (4.12) C.C. signifies the complex conjugate.) The slowly varying 
complex functions al, are determined from the condition that no secular terms 
appear in (4.7) and (4.8). After some manipulation, the conditions for the absence of 
secular behaviour can be shown to take the form 

where 

afi a1, o G, n )  
da1,n - -- 

d7 

(4n- 1)  o, 
16(n+l ) (Zn+ 1 ) '  

(4n  - 1) 
Hfi  =- H ,  = 4 w,, 

(4.14) 

(4.15) 

and the superscript * denotes the complex conjugate. The initial conditions are given 
in (4.13). 

To solve (4.14) and (4.15), we can use a polar decomposition of the form 

al, , = M,(T) exp (i0,7), cxl, , = Mn(7) exp ( i 0 , ~ ) .  (4.16) 

Here, M,  and M ,  are the amplitude functions, while O,(T) and @,(T) represent the 
phase shift. Note that if 0, and 0, depend linearly on 7 ,  the phase shift corresponds 
to a simple change in the oscillation frequency. Upon substituting (4.16) into (4.14) 

0- - - H ,  M i  sin ( 2 0 ,  - @,), ( 4 . 1 7 ~ )  
dlM 

and (4.15), we obtain 

a7 
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d 0  
d7 

M , L =  H,M2,c0~(20,-0,), 

-- It - H,MoM, sin ( 2 0 ,  - Oo), m 
d7 

-- dOn - H,M, cos (20, - a0). 
dr  

The initial conditions corresponding to (4.13) are 

With these initial conditions, 

and thus 0, = 0, = tn for all 7.  In this case, 

(4.17 b )  

(4.17 c) 

(4.17d) 

(4.18) 

(4.19) 

The energy equation for the oscillation described by (4.19) can easily be shown to 

l i ,@(~)+H,M:(r )  = const. (4.20) satisfy 

Any solution of(4.19) must satisfy this constraint. (Note that if A, = 0, A, 4 0, then 
dMo/dr  and dM,/dr are both zero at  r = 0. In  this case, there is no coupling between 
modes, and the bubble simply undergoes volume oscillations of constant amplitude 
A J w ,  with frequency wo. )  

With the equations in the form (4.19), an analytic solution is easily obtained. This 
solution, expressed in terms of al, and ax, ,, takes the form 

(4.21) 

al,,(7) = iBl,,(7) = T,isech(U,T+V,) (n 2 2). (4.22) 

al,o(7) = ipl,o(r) = -R,itanh(U,7+Vn), 

The coefficients R,, T,, U, and V, are 

and 

in which Sign {x} = x/lxl. 
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1 

FIGURE 3. Phase diagram, M ,  21%. Mo, for the resonant case w,, = 20, for various sets of initial 
conditions {Mo(0),M4(O)} : 0, initial points in the phase portrait. 

By applying the initial conditions (4.1), instead of (4.6) for the present case, the 
solution for Longuet-Higgins’ (1991) problem can be readily reproduced in the same 
form as (4.21) and (4.22): 

> (4.23) 
4n-  1 

16((2n+ l ) (n+l ) ) t  (2n+ 1) “1, o ( 7 )  = i 

(2n+ 1) 
(4.24) 

Since 0, and 8, are independent of time, 7, it can be seen from (4.11)-(4.13), in 
conjunction with (4.16)) that the mode-mode resonance at  O ( 2 )  generates a slowly 
varying amplitude envelope for the shape and volume modes of oscillation at  O(e). 
The phase-plane portrait of this oscillatory behaviour is shown in figure 3. As 
indicated by (4.20)) the trajectories of M ,  versus M ,  are closed ellipses corresponding 
to different constants on the right-hand side of (4.20). 

It will be noted from (4.19) that both dM0/d7 and dM,/d7 = 0 whenM, = 0. Thus, 
for any given pair of initial values for M,  and M,, the solution will follow one of the 
solution trajectories of figure 3, but in every case, this leads asymptotically to a final 
state in which M ,  = 0 andMo =+= 0. In other words, the resonant interactions at  O ( 2 )  
produce an exchange of energy between the shape and radial modes at O(E) ,  which 
occurs on a timescale et, and leads finally to a one-way transfer of all of the initial 
deformation energy to the radial mode. This qualitative feature of the energy 
transfer between modes is identical to Longuet-Higgins (1991) solution, (4.23) and 
(4.24), for bubble oscillation from an initially distorted shape with equilibrium 
volume. 

It can be seen from figure 3, that the details of the energy transfer process depend 
on the magnitude and signs of M,  and M ,  at t = 0, as given by (4.18). In particular, 
if we start with an initial state in the upper right or lower right quadrants of figure 
3, the magnitude of the radial mode will first decrease as energy is transferred to the 
deformation mode, until eventually the radial mode vanishes altogether, and the 
magnitude of the deformation mode is at  a peak. Beyond this point in time, however, 
the energy transfer goes back in the opposite direction, with the radial mode growing 
and the deformation mode decaying until eventually all of the energy resides 
permanently in the radial mode. If the initial state is in the upper-left or lower-left 
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quadrant, on the other hand, the energy transfer will be from the deformation mode 
to the radial mode a t  all times, exactly following the second part of the dynamics 
described above. Thus, it can be seen from the definitions of R, and T, (following 
(4.21) and (4.22)), that  the energy transfer direction is initially sensitive to the signs 
of A ,  and A, ,  but eventually all of the energy resides in the radial mode. 

At the resonant state, the monopole pressure distribution can be determined by 
utilizing the equation of motion, correct to O(s2). The calculated disturbance pressure 
at  large distances from the bubble is given by 

Comparing (4.25) with the form of the amplitude function al, , = -pl, o ( ~ )  sin wo t ,  it 
can be seen that the leading-order contribution to the monopole-like pressure 
oscillation is in anti-phase with the breathing mode oscillation, and the intensity of 
the monopole radiation is initially increased or decreased depending on the sign ofA,. 
(IfA, > 0 it decreases, and vice versa.) However, again as t + co, the amplitude of the 
monopole-like contribution is increased at the expense of the exponentially decaying 
deformation mode (see figure 3). 

4.2. Step response i n  a quiescent Jluid 

We have seen in the preceding section that the bubble response to  an impulse in 
pressure in the absence of an external flow involves a resonant interaction between 
the radial breathing mode and the Pn-mode of deformation when w, = 2wn, which 
leads eventually to  the one-way transfer of energy at O(E),  from the deformation 
mode to the radial mode of oscillation. The same one-way transfer is also found in the 
related problem of Longuet-Higgins. An obvious question is whether resonant 
mode-mode interactions always transfer energy to the radial mode at  long times. 

In order to investigate the factors which govern the direction of energy transfer, 
it is advantageous to  consider a second problem of a bubble in a quiescent fluid, but 
with the pressure at the bubble surface undergoing a step change a t  t = 0 instead of 
an impulse, i.e. 

(4.26) 
n 

Here, H ( t )  is the Heaviside step function. The reason for our interest in this problem 
will become evident after we have completed the analysis. Anticipating the 
appearance of secular terms a t  O(e2) ,  we begin by writing the O(s) solutions as 

(4.27) 

(4.28) 

(4.29) 

(4.30) 
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These expressions clearly satisty the initial condition (aj ,  , = 0 and an,, ,/at = 0 at 
t = 0) and the condition for imposition of a step change in the ambient pressure. It 
can be noted from (4.27)-(4.30) that an ideal-gas bubble will execute both radial 
and shape oscillations around a 'new' steady-state radius and shape, 

in response to the step change in the pressure distribution on the bubble surface. This 
transition of the base-state from the initial equilibrium shape and volume leads to 
major changes in the bubble dynamics as we shall see shortly. To obtain governing 
equations for the slowly varying coefficients el, ,(7), we require the governing 
equations for the O(e2) terms in the expansions (2.13) and (2.14).  

By substituting t>he general solution forms (4.27)-(4.30) into the kinematic and 
dynamic boundary conditions, (2 .8)  and (2.1 l ) ,  we find 

+ C.C. +non-secular terms, (4 .31)  

+$(a,, , a:, , ) ( 3 4  - 3w, w, - (n - 1 ) w i }  exp (i(wo - w,) t )  

(2n+ l ) (n+  1)K, 2(n+ 1) 10--n 
3n+ 1 [ 7 + - - ] ~ f i ]  4 

al, neXP ( i u n  t )  

+c.c. +non-secular terms, (4.32) 

with 
- I ) ! !  6%'' ,n even; K ,  = 0, n odd. 

Kn [';n,2)! ] ( 3 n - l ) ! !  

Upon examination. it can easily be seen that secular terms exist in (4 .31)  and (4 .32) ,  
both for w, = 2w, and wo = 0,. Hence, in this case, the radial mode can be in 
resonance with the IJn mode of deformation (n =+ 0) for either wo = w, or wo = 2w,. 
Furthermore, both (4 .31)  and (4.32) contain additional secular terms of the self- 
induced type, which are present for all values of w, and w,. As is well known, such 
terms do not result from mode-mode interactions, but rather represent a shift in the 
frequency of oscillation. I n  the present case, there are self-induced terms proportional 
to A, in both (4.31) and (4 .32) ,  and these correspond to a frequency shift due to the 
change in bubble volume caused by the step increase or decrease in the spherically 
symmetric pressure contribution a t  the bubble surface. I n  addition, for n even, there 
is also a frequency shift in the shape deformation modes due to the change in mean 
bubble shape for A ,  4 0. 

Thus, prior t,o discussing the two cases of resonance between the radial and shape 
deformation modes, we briefly consider the frequency shift for non-resonant values 
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of wo and w,. This can be derived easily from (4.31) and (4.32). In  particular, the 
conditions to eliminate the self-induced secularity can be seen to be 

(4.33) 

(4.34) 

where 
(2n+ l ) ( n +  1)K,  

(3n+l )o ,  4 

Thus 

(4.35) 

(4.36) 

and it follows that 

a,&) = A 2 w," [ cos { wo ( 1 +- : : ( 2 + 3 y + y ) ) t } - 1 ] 7 ]  

(4.37) 

al,,(t) = - A ,  COS 0 ,  1 +s- t - 1  . 
w; [ i ( 31 1 

Hence, the frequency of both volume and shape oscillations is modified by the change 
in mean volume induced by a step change in the isotropic pressure. Furthermore, the 
frequency of shape oscillations is additionally modified by the change in mean shape 
that accompanies a step change in the non-isotropic surface pressure. 

The frequency change for volume oscillations is either positive or negative 
depending on the sign of A,,. When A, < 0, the bubble volume increases from the 
equilibrium value, which results in a decrease in oscillation frequency. This decrease 
in frequency has an important significance. because a t  a critical magnitude of the 
step change in pressure a t  the bubble surface, -(€A&, the square of the true 
frequency of oscillation becomes zero and eigenvalues for the coefficient function a1, , 
change from pure imaginary to real. The critical intensity, - where this occurs 
will thus correspond exactly to a limit point for existence of a steady-state value for 
the bubble radius in the reduced surface pressure field, i.e. r = 1 --EA,,/(O~. An 
estimate of the critical intensity can be obtained from the present asymptotic 

solution (4.37) : . 4  

(4.38) 

Thus, as the compressibility of the bubble increases (i.e. w: decreases), the gas bubble 
becomes less stable to a step change in the pressure at its surface. It can be-seen from 
(4.37) that  when A ,  > 0, the bubble volume decreases and the bubble oscillates with 
increased frequency around the 'new ' stable steady-state radius corresponding to 
the increa.sed ambient pressure. 

The same qualitative picture applies also to the change in oscillation frequency of' 
shape modes owing to the step change in shape for a non-zero coefficient A, .  For 
positive A,:  the bubble is deformed into an oblate shape, and the frequency of shape 
oscillations is increased, whereas for negative A,, the bubble is prolate and the 
frequency of oscillation is decreased. I n  this case, it is known from prior studies 
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(Kang & Leal 1990) of bubble oscillation in a uniaxial flow that the frequency 
decreases as the degree of deformation increases in the prolate case (A, < 0). and 
becomes equal to zero at  the critical deformation beyond which steady solutions for 
the bubble shape cease to exist. An asymptotic prediction for the critical value of An 
can also be obtained from (4 .37) .  For a bubble in a biaxial flow, on the other hand. 
prior studies show that steady solutions for the bubble shape exist to high degrees 
of deformation (high Weber number) and there is no indication of the same type of 
limit point behaviour that was observed for prolate shapes. It is thus not surprising 
that the frequency of  oscillation actually increases in this case for increasing A, .  

It should be noted that the modification in oscillation frequency is present for all 
conditions, including the two limits of resonant interactions between shape and 
volume modes. However, as we shall see in the next sub-section, we may expect the 
frequency shift to be modified somewhat in the resonant case compared to non- 
resonant case. 

4.2.1. Resonant interaction ut wo = on 

conditions for the absence of secular terms in (4 .31)  and (4.32) are 
Let us now consider the nature of the resonance for wo = w,. In  this case, the 

where 

da10 - - - - iHl a,, 12 + ilI* al, 0 '  
dr  

( n +  l ) ( n - 3 ) A n  
, H 3 =  

2(2n + 1) wo 2% 
H ,  = ( n - 3 ) A n  

(4.39)  

(4 .40)  

(4.41) 

As noted above, (4.39) and (4 .40)  still retain the self-induced resonance terms with 
coefficients H ,  and H ,  that were defined in (4.35), and, in addition, contain new terms 
proportional to H I  and H 3  that correspond to resonance interactions between modes. 
Thus, in the resonant case, it is necessary to determine al,o and al,n so as to 
simultaneously eliminate both types of secular terms. This means that the frequency 
shift associated with H ,  and H ,  will be modified somewhat relative to the case with 
no resonance. Furthermore, the presence of a frequency shift away from the 
fundamental frequencies w,, and w ,  means that the dynamic response due to 
mode-mode interactions should correspond to a slight detuning away from exact 
resonance. 

Since (4 .39)  and (4.40) are linear, we can proceed formally toward an analytic 
solution. For this purpose, i t  is convenient to  express 

a1 ,o=~o+iy , ,  a,, ,=xn+iyn, (4 .42)  

and a,,n in the form, 

and then write (4 .39)  and (4 .40)  as a first-order dynamical system 

X = A - X ,  (4.43) 

where x = ( X O ,  Yo, x,, Y J T >  (4 .44a)  

and 

0 -II,  0 
A = [  H 2  0 - H ,  7 1, 

0 II, 0 -H4 
- H ,  0 H ,  0 

(4.446) 
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It is well-known that the solution of (4.43) can then be expressed in the exponential 
operator form 

x = eAt-x,, (4.45) 

where x, = x(t = 0) = -,o, (n+l)An,O)T 
4l 

The qualitative nature of the solution (4.45) is completely determined by the 

(4.46) 

eigenvalues of the matrix A,  which are the roots of the equation 

~4 + ( ~ H , H ,  +H; + H;) ~ 2 +  (H, H ,  - H , H , ) ~  = 0. 

Since 2H,H,+H;+H: > 0, 

(recall that H ,  H ,  > 0)) and the discriminant is also positive, i.e. 

( 2 H l H 3 + H ~ + H ~ ) 2 - 4 ( H 1 H 3 - H 2 H 4 ) 2  = [ 4 H , H 3 + ( H , - H 4 ) 2 ] ( H 2 + H 4 ) 2  > 0, 

the four roots of (4.46) must be pure imaginary. Indeed, it can be shown after a little 
algebra that the four eigenvalues of A are 

h = + i n , ,  +iQ,, (4.47) 

where 5 2 1 , ~  = $((4H, H ,  + (H2 - H4)')'lk Ifi, -k H41). (4.48) 

It follows that the components of x are all linear combinations of sinusoidal functions 
of 52, T and 52, 7. Hence, knowing x,(T), y0(7), ~ ~ ( 7 )  and y,(7), we can easily understand 
the dynamics associated with (4.39) and (4.40). We can write 

a 1 , o  =Jfoexp(i@o), a l , n  =2M,exp(i@,), (4.49) 

where No = (xi + y$, Mn = (xi + y;);, 
and 0, = tan-10, 0, = tan-lfi.  

XO x, 

It follows that the generic behaviour in this case is that both the breathing mode and 
the P, mode undergo continuous oscillations at O(s) .  This is fundamentally different 
from the behaviour following a pressure impulse, or from the oscillations following an 
initial perturbation in shape (Longuet-Higgins). In  these cases, the dynamics 
reduced to a one-way transfer of energy from the deformation mode to the breathing 
mode. Here, the two modes continuously exchange energy on the slow time-scale, 
7 - 0 ( 1 ) ,  and thus, in a non-dissipative system, they both remain O(s)  for all times. 

The exception to this generic behaviour occurs when A,, and thusM,, is zero at  
t = 0. In  t h e  polar representation (4.49), the governing equations (4.39) and (4.40) 
can be expressed in the alternative form 

-- m~ - H,M, sin (0,- @,), - dMn - - -H,M, sin (0, -@,,I, (4.50) 
d r  d7 

with initial conditions 

iWO(O) = A ,  7, M,(O) = (n+1)A4,, 0,(0) = @,(O)  = 0. 
WO 4 2  

(4.51) 

(4.52) 
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Eliminating sin (0, - 0,) from (4.50), it can be shown that 

H3W0(7) + HllM2,(r) = constant, (4.53) 

which represents a surface energy conservation equation for the bubble oscillation. 
Now, if M ,  = A ,  = 0 a t  T = 0, we see from the definition (4.41) that 

H ,  = H ,  = 0 at T = 0, 

and thus, 

while 

m,- - 0, -- 
dr  dr 

dT 
-- dOo - H,. 

It follows that M ,  remains zero for all time, and thusM, is also constant at its initial 
value. O,, on the other hand, increases linearly with t ,  and this corresponds to the 
frequency shift in the radial mode that occurs because the step change in pressure 
induces a change in the bubble volume. The fact that M ,  = 0 simply means that 
there is no resonant mode-coupling for a bubble that initially undergoes only a 
volume change, and in this case the deformation mode remains a t  zero. The result 
Ma = const. =+ 0 means that the bubble oscillates only on the timescale, t = O ( l ) ,  
with a modified frequency, but without any slow oscillation in amplitude as occurs 
for other initial conditions. 

I n  order to further illustrate the predicted behaviour for this 1 - 1 resonance case 
(i.e. w, = w n ) ,  we have integrated (4.50) and (4.51) numerically for n = 4, and three 
sets of initial values for Ma and M,. The results are shown in figure 4. The first case, 
for' a very small initial value of M4 = 0.05 and Ma = 1,  is similar in behaviour to the 
limit M4(0) = 0. The increase of both 0, and 0, is approximately linear in 7.  Thus 
both the radial and P4 modes oscillate at an increased frequency owing to the change 
in bubble volume, but the effect on the radial mode is clearly larger. The second case 
is for M,(O) = 0.9 and M,(O) = 1 .1 .  In  this case, the amplitudes of both modes 
oscillate on the long timescale T = O( l ) ,  though the amplitude of the shape oscillation 
is very much larger. This may be slightly misleading, however, if our interest is with 
the relative contributions of the n = 0 and n = 4 modes to the bubble volume. The 
volume oscillation associated with M,  is 0 (&,). On the other hand, the volume 
oscillation due to the oscillations of shape is much smaller, only O(a2M2,). Finally, the 
last case considered is M,(0) = 0.05 and Mn(0) = 1. In this case, there is a significant 
coupling between modes which leads to moderate fluctuations in Ma via energy 
exchange with the larger oscillations of the bubble shape. It may be noted that all 
three of the cases shown in figure 4 that the phase functions @,(T)/T and @,(T)/T are 
very weak functions o f t  and thus that Q,(T) and e4(7) are nearly linear in r .  This 
implies that the phase modulation corresponds very nearly to a simple frequency 
shift. Based upon the numerical results in figure 4(b) for the case M,(0) = 0.9 and 
M,(O) = 1.1, we can easily estimate the modified frequencies for the two modes of 
oscillation to be 0, = w0(l  +2.11a), SL, = w , ( l +  1.586). (4.54) 

4.2.2. Resonant interaction at oo = 2w, 

The second case of resonant interactions following a step change in the pressure 
distribution at  the bubble surface occurs when w, = 2w,. In this case, the condition 
to exclude secular terms in (4.31) and (4.32) is 

(4.55) 
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FIGURE 4. The amplitude functions and phase angles as a function of the slow timescale T, at the resonant state oo = up. (a) M,(O) -0.05. 
Mo(0) = 1.0: (b) M4(0)-1.1, MO(O) = 0.9; (c) M4(0)-1.0. Mo(O)-0.O5. 
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The coefficients H ,  and H ,  were defined earlier in conjunction with (4.14) and (4.15), 
while H ,  and H ,  are defined in (4.35). Clearly, these equations resemble (4.14) and 
(4.15), but now include the self-induced secular terms involving H ,  and H ,  that 
correspond to a frequency shift, and thus a ‘detuning’ of the primary resonant 
interactions. As shown in the preceding section, such detuning will tend to produce 
a continuous exchange between the radial and shape deformation modes, rather than 
the one-way energy transfer that was found for the case of a pressure impulse under 
the same conditions, w,, = 2w,. 

By applying the type of polar decomposition defined in (4.16)) we can obtain a 
system of four differential equations governing the amplitude and frequency 
modulations for the bubble oscillation 

rL = H,iW,,M,sin(20,--0,), (4.56) 
dM 

dT d7 
0- - - H , M i  sin ( 2 0 ,  - @,), ___ dM 

- H,+H,M, ,c~s(~O,-~ , , ) ,  (4.57) M , A  = H,M,+B,MZ,COS(~~,-O,), - - dO d 0  
dT dr  

with the same initial condition as in the previous case w,, = 0,. In this case, the 
energy equation for the oscillation can be derived from (4.56). The result is 

H6ie(7)+H5W,(7) = constant (r 0). (4.58) 

For general cases, in which A ,  =+ 0, the nonlinear differential equations (4.56) and 
(4.57) can only be solved numerically. However, in the special case where A ,  = 0, 
A ,  $. 0, it can be seen that dM,/dT = 0, dM,/dT = 0 at  T = 0, and thus M ,  = 0, 
M, = A,/ot  for all T .  Further, dO,/dT = H, so that 0, = H27. Thus, ifwe begin with a 
step change in only the isotropic contribution to the pressure on the bubble surface, 
the response is simply radial oscillations with a modified frequency, w,, = sH2, which 
is either increased or decreased depending upon whether A,, (and thus H,) is positive 
or negative. There is no coupling in this case with the shape deformation mode 
of oscillation. 

On the other hand, we can show via numerical analysis that resonant coupling 
exists when A ,  + 0, for arbitrary A,. A typical case is shown in figure 5 for w,, = 2w4, 
and MJO) = 0.9 and M4(0) = 1.1. It can be seen from figure 5(a)  that the two 
resonant modes exchange energy continuously and sustain oscillations at all times. 
However, even if A ,  = 0, there is a transfer of energy from the deformation mode to 
the radial mode, and this is again followed by a continuous exchange of energy 
between the two modes at  O(e) .  The sustained energy exchange for these cases is 
essentially due to the frequency detuning that, results from the change in the steady- 
state bubble radius and shape at  O(s)  induced by the step change in pressure (i.e. 
A ,  =!= 0, A ,  4 0). It is also noteworthy that the amount of energy exchange at  0, = 2w, 
is much larger than that which occurs for resonance at  w, = w, with (approximately) 
the same set of initial conditions (compare figures 4 ( b )  and 5). As in the previous case 
o, = w,, the change in the steady-state bubble radius and shape at O ( s )  due to the 
step change in the average ambient pressure (i.e. A ,  + 0, An, f 0) leads to a phase 
modulation in each mode, which is monotonically increased with 7 (see figure 4 b ) .  

It can be noted from (4.56) and (4.57) that the phase modulation for each mode is 
very sensitive to the sign of A ,  (i.e. M,(O)). When A,, > 0, the phase modulation for 
each mode increases with 7, and vice versa. As in the previous case (w, = w,), 0 , ( 7 ) / 7  

and O,(T)/T are very weak functions of 7. When n = 4, M,(O) = 0.9 and1M4(0) = 1.1, 
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7 

FIUTJRE 5. Amplitude modulations MJ7)  and iMq(7) and phase angles versus the slow timescale 7 

at the resonant state oo = 2w,: Mo(0) = 0.9, MJ0)  = 1.1 and y = 1. 

it  is found that Oo(r)  - 2 . 7 4 ~ ~ 7  and 0 4 ( r )  - 2.950~7. Then, the frequency of each 

(4.59) 
oscillation is 

whereas the modified frequency for M,(O) = k 1 and M,(0) = 0 is determined from 

G?, = 0,(1+_2.5~). (4.60) (4.37) to be 

Do = oo(l+2.74c), G?, = w4(1+2.95e), 

Comparing (4.54) and (4.59), it can be seen t,hat the bubble oscillation a t  w, = 2w, in 
the presence of a non-uniform pressure distribution becomes much more unstable 
than it would be at wo = 0,. This is a consequence of the increased amount of energy 
exchange between the two resonant modes a t  w, = 2w, relative to the case oo = w,. 

In  figure 6, the phase trajectories, M,(7) vs. M0(7),  are plotted for various sets of 
initial conditions (i.e. A, and A, ) .  The present phase trajectories at  the resonance 
condition w, = 2w, induced by a step change in the pressure are qualitatively 
different from those obtained for the resonance at w, = 2w, induced by an impulse 
in the pressure. In the present case, the two resonant modes exchange energy 
continuously and sustain oscillations at all times unless either A, = 0 or A ,  = 0. It 
is worth pointing out that in the step response, the bubble oscillates around the 
‘new ’ steady-state shape which is non-spherical owing to the non-uniform pressure 
distribution (A, =!= 0). In  addition, the bubble radius (or volume) is changed at O(s)  
from the initial equilibrium value owing to the reduced (or increased) average 
pressure (A, =!= 0). We may anticipate that these two combined effects can also be 
produced by imposition of an external mean flow, which we shall consider in $5.  
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FIGURE 6. Phase diagram M4(7) vs. M ~ ( T ) ,  for various sets of initial conditions {No(0),M4(O)): 
0, initial points of the phase trajectories. 

5. Bubble oscillation in a uniaxial straining flow 
In  this section, we generalize our investigation of the dynamic response of an ideal 

gas bubble to include the influence of steady deformation due to  interaction with a 
steady mean flow. Specifically, we consider a bubble with the steady-state shape. 
(3.5), due to a uniaxial straining flow, when the (acoustic radiation) pressure at the 
bubble surface undergoes an abrupt, but asymptotically small change, (4.2) or (4.26), 
a t  some initial instant. 

We begin with the response to an impulsive change in pressure. In this case, it can 
be anticipated from the previous section. that the frequency of oscillation of both the 
radial and shape deformation modes will decrease with increase of the steady 
deformation, and this is again reflected in the present analysis by the appearance of 
(self-induced) secular terms beginning at  O(e2) .  

The presence of the external flow produces qualitatively new effects when we 
consider mode-mode interactions. One new feature is that the leading-order 
correction to the bubble volume occurs at (I(€:), rather than O ( 2 )  as in the previous 
examples, and this new ‘breathing’ mode of oscillation can exhibit resonant 
interactions with the Pz mode of shape oscillation in the special case on = w2,  to 
produce changes in the oscillation amplitudes a t  O(t) on the intermediate timescale 

I n  addition, at O(s2), three distinct kinds of secular terms are possible. The first i s  
the self-induced effect, described earlier, which is always present when the bubble is 
deformed, and leads to a decrease in oscillation frequency with increase in tht. degree 
of bubble deformation in the steady flow. The second occurs when w,, = Zw, and 
corresponds to a resonant interaction between the breathing and shape modes of 
oscillation that influences the amplitude of oscillation a t  O(E)  on the slow timescale 
et. Although an apparently similar resonance was found in the previous section in the 
absence of any mean flow, we shall see that the existence of a non-spherical steady- 
state shape leads to new effects in the nature of the slow timescale variations of the 
interacting modes. Finally, resonant interactions between the breathing and 
deformation modes appear when w,, = w,, but in this case this is solely a consequence 
of the presence of the mean flow - i.e. this type of 1-1 resonance did not appear with 
an initial pressure impulse in the absence of flow. 

€kt 
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We begin by outlining the governing equations, and their solutions through terms 
of0(e2), in the generic case where mode-mode resonant interactions do not occur (i.e. 
w, + wn,wo + Zw,). I n  this case, the only secular terms in the analysis appear 
beginning a t  0(2), owing t o  the changes of frequency in the O ( E )  shape and volume 
oscillations that are caused by bubble deformation in the steady flow. [It should be 
noted that such frequency shifts due to steady deformation are also expected to 
occur in the shape and volume oscillations, a t  O($ and O ( 2 ) .  However, in the present 
solution scheme, these would only be reflected by the appearance of 'self-induced' 
secular terms in the dynamical equations at O(6)  and O(e3),  and we do not calculate 
any solutions a t  this level of approximation.] 

After we have considered this generic case, in which resonant interactions between 
modes are not present, we turn to the special resonant cases when w, = w, and 
wo = 20, .  

5.1. Bubble oscillation in the absence of m#ode-mode resonant interactions 
We begin, as stated above, by considering the case of an O(e) impulsive change of 
pressure when wo does not take either of the special values w, (n b 2 )  or 20, (n 2 2) .  
In  general. our analysis follows the asymptotic expansion scheme (2.13) and (2.14). 
However, since we anticipate the likelihood of secular behaviour at  O ( d )  and 0(2), 
for the special conditions wo = on or wo = 2wn, it is convenient t o  formulate the 
governing equations right from the beginning in a form suitable for a multiple- 
timescale solution procedure. In  this framework, the bubble shape functions fj a t  
each order in d, and the corresponding velocity potential functions q$. are considered 
to be functions not only of t ,  as in (2.15) and (2.16)-(2.17), but also of two slowly 
varymg timescales, &t and d, all considered as independent variables, i.e. 

where [ &, 7 €t. (5.3) 

A t  the leading order, O(E) ,  the amplitude functions ul, and bl, ,, take the same 

(5.4) 

form (4.11) and (4.12), as in the case without a mean flow, i.e. 

u1, n ( t >  5,7) = ${a1, n ( P >  7) exp (ion t )  +as, .> + c.c., 

with 

As usual, the slowly varying functions al,n will be chosen in such a way as to 
eliminate any secular terms that appear in the governing equations at O(e:) or O(e2) .  

In the presence of the mean flow, E:& given by (3.1), the second term in the 
expansion for f and $ occurs at O(ei). Governing equations for the radial, Pz and P4 
modes of oscillation at 0(&, can be obtained from the general equations (2.8) and 
(2.11) and the forms of the O(s) solutions above. 
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5.1.1. O ( d )  problem 

Radial mode 

a 2  

~ a , , , + o ~ a , , ,  = - i o , s e x p  aL  (iw,,t)-~io,a,,,exp (iw,t)+c.c. (5.7) 

Governing equations for the higher order Pn (n > 4) deformation modes can be 
obtained in the same manner. 

It is clear from the forms of the right-hand sides of (5.7)-(5.9), that there are no 
resonant effects at O(2) unless o, = w2. Hence, apart from the exceptional case when 
w,, = w,, it  is clear that 

for all n, and thus al, ll. is a t  most a function of the slower time variable r. The O ( g )  
solution thus takes the general form 

1 
{A,exp (iw,t) +$iw,a1,.,(7) exp (iw,t))+c.c. 

2(oi - oi) % , n  = 

(A, exp (io, t) + iw, el, ,(r) exp (io, t ) }  2(oi - w,") a2,2 = 

125 
(A,  exp (iw, t )  +3w, a], ,(r) exp (iw, t ) }  + C.C. 

2 1 ( W i  - o;) 
+ 

{A, exp (io, t)  +$w2 al, 2(r) exp (io2 t ) }  + 0.c. 
75 

7 (oi - lug) = 

(5.11) 

(5.12) 

(5.13) 

It is evident that these solutions for a.,, , and a2, , are not valid when oo = w2 owing 
to  the existence of a resonant interaction between the radial and P,-modes. We shall 
consider this special case shortly. 

The significance of the solutions (5.1 1 )-(5.13) a t  O(& is twofold. First, the strength 
of mode-mode interactions is strongly enhanced owing to the presence ofa  mean flow 
which deforms the bubble, compared to  the interactions in the absence of flow which 
only occur a t  O(e2) .  This means, for example, that a radial oscillation is induced at 
O(@) owing to a perturbation in the initial shape, whereas in the absence of flow it 
could only be O(e2) (in the non-resonant case). Of course, i t  cannot be concluded that 
the magnitude of volume or shape oscillations due to interactions with a mean flow 
will always be O(d)  in a small-amplitude expansion. This is a consequence of the 
specific choice of an undisturbed flow of O(&) which induces steady deformation at 
O(e), coupled with a pressure perturbation of O(e) .  However, the general conclusion 
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of enhanced mode-mode coupling due to flow will most certainly carry over to other 
cases. 

The second point of significance of the solutions (5.11)-(5.13), is that  the nature of 
modal coupling is fundamentally different from that in cases examined previously 
without flow. Specifically, the existence of a radial mode contribution at O(d)  is 
solely due to interactions between the mean flow and the initial P, mode of 
deformation - there is no dependence of a2, , on A,. Similarly, the P, contribution at  
O(c:) is dependent on A, and A,, but not A,, and so on. One very important 
implication of this is that a mechanism now exists to generate a time-dependent 
shape oscillation even when the initial condition involves only an impulse in volume 
(i.e. A, $: O,A, = 0). I n  all cases without flow, coupling between shape and volume 
modes was only possible if A,  =k 0. If A ,  $: 0 but A,  = 0, we previously found that 
the bubble only oscillated radially for all times. The mechanism for generation of a 
shape oscillation in this case is simply that the change of bubble radius causes the 
surface stresses associated with the mean flow to become time-dependent owing to  
the time-dependent position of the bubble surface. 

Before studying the resonant interactions at O(ei), let us complete our investigation 
of the generic case where w, $. on or w, 4 2wn, by considering the O ( 2 )  terms in the 
expansion. The governing equations at O ( 2 )  are again obtained from the general 
equations (2.8) and (2.11), and now depend on the forms of the solutions for both ul, 
and a2, n .  For brevity, we show explicitly, only the equations for a3, ,, a3, and u3, 4. 

5.1.2. O ( 2 )  problem 

Radial mode 

+ C.C. +non-secular terms. 
P,-mode 

a 2  a 
- atza3,,++:a3,, = 

3175 675 
%, 0 exp (iw, t )  -- 4 . 4  exp N W ,  - 0 4 )  tl 2 

+--- 

(5.14) 

(5.15) 

+ C.C. + non-secular terms. (5.16) 
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As noted earlier, there are three possible secular terms in these O(s2) equations. 
Two result from resonant interactions between the radial and shape deformation 
modes, when either w,, = w, or 0, = 2w,. We shall discuss these special cases (which 
also includes on = 0,) later in this section. However, even when w,, + w, or wo + 20, ,  
the governing equations (6.14)-(5.16) still contain secular terms, which must be 
eliminated if the solutions for as,n are to remain bounded. These are the so-called 
‘self-induced’ secular terms that appeared earlier in the analysis of a step change in 
pressure without the mean flow. We have already seen in $4, that they correspond 
to a decrease in the frequency of oscillation of the O(F)  solution with increased steady 
deformation of the bubble, rather than a change in the amplitude of oscillation as 
occurs in cases with mode-mode resonant interactions. 

To obtain bounded solutions at  O(e2) for this non-resonant case, the slowly varying 
coefficients in the O(s) solutions must be chosen to eliminate the ‘self-induced’ 
secular terms in (5.14)-(5.16). It can be shown very simply that the resulting 
solutions for these coefficient functions can be expressed in the form 

where 
1 5 ~ ~ :  - 5 0 ( 3 ~ +  5) OJ: - 120(3y- 1) 

2 4 ~ : ( ~ :  - 6~:) Qo = , 

(5.17) 

760 + 5(7~:-36) 
“ = 2457 24w:(w:-wi) ’ 

Q 4 = 2 4 ( m  34649 +? w; ’ 

and so on for larger values of n. Combining (5.4) and (5.17), it follows that the 
complete solutions for the bubble response at O(s)  can be expressed in the form 

(5.18) 

(5.19) 

assuming only that w,, + w, or w,, + 2w,. The fact that the O ( 8 )  solutions (5.11)-(5.13) 
break down when w,, = w2 is clearly reflected in the forms for Q0 and Q2. 

As anticipated, the self-induced secularity at O(e2) generates only a modification 
in the frequency of each mode (provided w,, + w,, wo $. 20, as assumed). Kang & Leal 
(1988) obtained the same effect for a constant-volume bubble. The modified 
frequency 52, = w, (1 - Q ,  e), is either increased or decreased, depending upon the 
physical properties (i.e. y and w,,) of the gas inside the bubble. For example, in the 
case of the n = 2 deformation mode, 62, = w2 (1  -0.3093s) for a constant-volume 
bubble (i.e. on-+ a), while 52, = w, (1  f0.0448~) for w,, = 10. The limiting result for a 
constant-volume bubble is nearly identical to that obtained earlier by Kang & Leal 
(1988) in which the purely imaginary eigenvalue A,  was directly calculated as 
A, = w2 (1 - 0.31~)  i. It is also noteworthy that the natural frequency w, decreases as 
the amplitude increases. 

An important objective of the present theory is the pressure disturbance at  large 
distances from the bubble owing to the volume and shape oscillations. The 
disturbance pressure at infinity corresponding to the shape and volume oscillations 
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defined by the solutions (5.18) and (5.11)-(5.13) can be determined via (4.11). The 
result, correct to o(F;), is 

P" = E 

Thus, a monopole pressure disturbance (i.e. l /r)  exists at  both O ( E )  and O(&. 
The monopole pressure disturbance at O(s) is clearly due t o  the radial (breathing) 

mode of oscillation at  O(s)  that is created by the radially symmetric impulse in the 
pressure, do d( t ) .  The monopole pressure contribution at O(&, on the other hand, has 
two distinct sources. The first is the standard 'Bernoulli' pressure, proportional at 
O($) to the product of the undisturbed velocity Vq5, and the O(e)  perturbation to the 
velocity V$l. The second is the contribution from the rate of change of local inertia 
at o ( E ~ ) ,  i.e. Qa$,,,/at. 

Of particular interest is the result obtained by considering the special case 
A, = 0, in which the bubble initially exhibits only shape oscillation at O(e). It is 
obvious from (5.20) that the P2-mode of deformation at O(s) generates a monopole 
pressure disturbance at  O(&,  which is due essentially to the presence of the external 
flow. Specifically, in the absence of the external flow, we have seen in $4.1 that a 
deformation mode at O(e)  emits a monopole radiation only at  O(e2) ,  provided that we 
omit the special case w,, = 2wn of mode-mode resonance. The result (5.20) therefore 
corroborates the earlier statement that the energy transfer from the deformation 
mode to the breathing mode of oscillation is very significantly enhanced by the 
presence of the external flow. It is especially noteworthy that the amount of energy 
the breathing mode gains at the expense of the deformation mode is rapidly increased 
when the two modes become nearly resonant in the limit as w, + w2. 

As noted earlier, if w, = o2 the bubble motion will exhibit a resonance between the 
radial ' breathing ' mode and the P,-mode of shape deformation at O ( d ) .  This resonant 
interaction is responsible for the rapid growth of the monopole radiation intensity at 
O(& as w0+ w 2  (and the rapid growth which would occur a t  O(e2) if we calculated P" 
to that level as w, + w, or w, + 2 ~ ~ ) .  In the following, we consider the special cases 
involving resonant interaction in detail, beginning with the resonant interaction 
between the radial and Pz modes that occurs at O($)  when w, = wz.  

5.2. Resonant interaction at O ( d )  when wo = w2 

Let us then consider the special case, when wo = w 2 .  In fact, we can see from 
(5.7)-(5.9) or (5.14)-(5.16) that secular terms (and resonant interactions) actually 
occur at both O(Q) and O(e2)  when wo = w2. The difference is that the O(& resonance 
influences the amplitude function al, on the timescale d t ,  and the one at  O ( 2 )  only 
appears on the much longer timescale ct. In this section, we consider only the effects 
at O(c8). This secularity at O(Q) (i.e. the terms containing exp (iw2t) and exp(iw,t) in 
(5.7) and (5 .8) ,  respectively) is generated by interactions between the undisturbed 
streaming flow (i.e. q5, = O(d)) and the oscillations of bubble volume and shape at 
O(E).  Perhaps the most important difference between the present case, and the 
resonant mode-mode interactions discussed earlier for a quiescent fluid, is that it 
occurs on the much shorter timescale d t  = 0(1) rather than st = O(1). This suggests 
that viscous damping (to be considered in a subsequent paper) will play a much less 
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important role in inhibiting the growth of resonant modes in the presence of flow, 
than it does for a quiescent fluid. 

I n  this case, the condition to preclude the appearance of secularity can be easily 
seen from (5.7) and (5.8) to be 

0 - --la (5.21) 1- 

ac 1,2’ 

a%, 2 

ac  - +$a,,,. (5.22) 

The solution of these equations, which incorporates the initial condition 
al, .(0) = Ll,(n+ l) /w.,  is 

where the phase angle A is given by 

A = tan-’ (=). ( 15)iA2 

(5.23) 

(5.24) 

(5.25) 

Then the complete solution for the resonant case (wo = w2)  a t  O(d)  can be expressed 
as 

Radial mode 
(A; +;A;): 

00s (&(&)it + A )  sin wo t ,  

1 
q51,0(t,r,T) = ( A ~ + ~ A ~ ) t c o s ( € ~ ( ~ ) f t + A )  coso,t-. 

r 

(5.26) 
W o  

a1, o(t) = as, 0 - 

(5.27) 

P2 mode 

(5.28) 

The solutions for the other modes (n =+ 0,2) are not changed and remain as in (5.18) 
and (5.19). This latter observation leads to the obvious question as to  why the 
resonant coupling a t  O(& involves only P2 and not additional shape deformation 
modes. At, firat glance, i t  seems obvious that this must be a consequence of the P2 
symmetry of the mean flow, (3 .1) .  The only caveat to this conclusion is the 
observation that the first approximation to  the steady deformed bubble shape 
involves both P2 and P4, thus perhaps suggesting that the situation is somewhat more 
complicated than it might first appear. In  any case, we believe that a resonant 
coupling would exist between any mean flow that leads to bubble deformation, and 
oscillations of volume that will lead to time-dependent oscillations of shape of equal 
amplitude. It is only the particular resonantly-driven shape mode (or modes) that 
would change if the form of the mean flow is changed. 

The main observation from the solution (5.26)-(5.29) is that  the multiple-scale 
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analysis predicts the existence of slowly oscillating amplitudes cos (5e/12)+ + d 
and sin(56/12)k+A for the radial and P, modes of deformation, respectively. An 
important additional qualitative feature of the solution (5.26)-(5.29) is that resonant 
mode coupling exists between the radial and P, modes for all combinations of A ,  i 0 
and/or A ,  + 0. We have seen previously that mode coupling (either resonant or 
non-resonant) exists in the absence of flow only if there is an initial perturbation of 
the bubble shape. Specifically, in the absence of flow, purely radial oscillations at 
t = 0 do not lead to  oscillations of shape. On the other hand, in the presence of a 
deforming mean flow, we found in the non-resonant case that an initial radial 
oscillation a t  O(s)  could induce a shape oscillation a t  O(d).  The present solution, 
(5.26)-(5.29), shows that this new mode of coupling is enhanced for the Pz mode via 
resonance, so that an initial impulse at O ( E )  in either the volume or the Pz mode of 
deformation produces an oscillation in the other mode, also a t  O(e), and thence to a 
continuously sustained energy exchange between the modes for all time. 

The mechanism for generating shape oscillations from an initial impulse in volume 
in the present case is simply that a bubble which oscillates radially is subjected to 
flow of different strengths as it  changes radius, and the natural tendency of the flow 
to deform the bubble thus contributes a time-dependent shape. If the volume 
oscillations are driven at the natural frequency of the P, mode, there is a resonant 
growth in the amplitude of the P,-mode oscillations. The possibility of large- 
amplitude oscillations of shape, driven by time-dependent changes in the spherically 
symmetric contribution to the pressure, may be an important factor in high- 
Reynolds-number bubble break-up phenomena. A final contrast between the present 
case and the bubble response to a pressure impulse without a mean flow is the 
continuous interchange of energy between the radial and shape modes. This is similar 
to the result obtained in a quiescent fluid (at resonance) due to a step change in the 
ambient pressure. In  contrast, the resonant response to an impulsive change in 
pressure in the absence of flow (w, = 2w,) always led to a one-way transfer of energy, 
from the deformation mode to the radial breathing mode. 

The monopole pressure disturbance due to the bubble oscillation in the present, 
resonant case (i.e. with flow and w, = w 2 )  can be shown to take the form 

(5.30) 

which is O(e)  even when A ,  = 0, i.e. the case in which the initial pressure impulse at  
the bubble surface does not have a radially symmetric component. Thus, when the 
radial mode and the Pz deformation mode are in resonance, a deformation mode at 
O(e) will create a monopole radiation a t  O ( E )  owing to the continuous energy 
exchange between the two modes. 

5.3. Resonant interactions at O(?) for w, = w, 

Finally, let us turn to the resonant interactions at O(2) .  We begin with the case 
where w, = w,. In  this case, secular terms appear in the governing equations 
(5.14)-(5.16) a t  O(e2) owing both to mode-mode interactions and to the existence of 
a frequency shift due to the non-spherical steady-state shape in the straining flow. 
We may note that one special case occurs, for w, = w,, in which resonance appears 
for both the O(& and O ( 2 )  problems. However, the analysis of the effect at  O ( 2 )  in 
this case is independent of the analysis at O($) because the response occurs on 
different timescales, O(et) here and O(&) in the previous case. 

The analysis at O ( 2 )  is somewhat more complicated because we must choose the 
slowly varying functions al, , to eliminate both the ‘self-induced’ and mode-mode 
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secularity terms simultaneously. This means that the frequency shift corresponding 
to the self-induced secularity will generally be different compared to that calculated 
earlier when wo + w,, and we will also expect a slow variation of the amplitude of 
oscillation and/or the phase. 

It is, perhaps, useful to  consider a specific example to illustrate our case. Thus, let 
us suppose that wo = w4 so that resonant interactions occur between the radial and 
P4 shape deformation modes. In  this case, to eliminate secular terms, we must choose 
al ,o  and C L ~ , ~  to set the first two terms on the right-hand sides of (5.14) and (5.16) 
equal to zero. Hence, we must choose the complex amplitude functions al, and al, 
to satisfy the conditions 

where 

a 
a T  
-alj = iCjkal,,  (j = 0 ,4 ,  k = 0,4), 

685 373-1794? C 
O4 - 1638w4 ' 

coo = 
2 8 0 8 ~ ~  ' 

(5.31) 

3175 1 973 845 c ' 
'44 = - 386 232@, ' 1820, 40 - 

By applying the initial conditions, we can solve (5.31) for C L ~ , ~ ( ~ )  and a1,*(7). The 
resulting complete solution for al, and al, , is given by 

- 5A4C04+(C00-A2)A0 sin { (w, + €Al) t } ,  (5.32) 
w4(A1 - '2) 

(A2 - Coo) sin { ( w4 + €A,) t} Co4+ (COo-Ai)Ao 

%(A, - A,) c04 
= 

(hl-Co0)sin{(w4+Ehl)t), (5.33) - 5A 4 + (Coo - 
W4(A1 -'2) '04 

in which A, and A, are the eigenvalues of C,, and defined as 

A1,z scoo+C4,+ ((coo-C44)2+4C04C40)t}. (5.34) 

We see that the solution to (5.31) produces both a slowly varying amplitude and a 
frequency shift. This is reflected in the analysis by the necessity of simultaneously 
eliminating the self-induced and regular mode-mode secularity terms. 

The velocity field due to the bubble oscillation can be easily evaluat'ed from the 
present solution (5.32)-(5.33), plus the solutions for the other oscillation modes 
(n + 0,4)  which remain unchanged from (5.18)-(5.19). 

An interesting feature of the solution (5.32) and (5.33) is that the two modes 
continuously exchange their energy and thus sustain both modes of oscillation for 
all time. To see that this is true, we may again consider an example in which A, = 0. 
In  this case, the shape oscillation a t  O ( E )  will induce a radial mode oscillation at 
O(s). The solution for the radial mode of oscillation can be expressed as 
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Thus, the slowly varying amplitude is sin {$(A, - A,) 7) and the frequency is modified 
as 0, = wo{ 1 + € ( A ,  + h2)/2w,}, which is a function of E and y .  In fact, the frequency 
is monotonically decreased as e and y increase, i.e. 

~ , (1 -0 .01560 .~ ) ,  = 1.0, 
Q o = {  0~,(1-0.01631e), y = 1.4. 

5.4. Resonant interactions at O(e2)  for w, = 2wn 
Finally, we consider the last resonant case when w, = 20, owing to mode-mode 
interactions. In  this case, it is again necessary to choose the slowly varying 
coefficients al,,, in such a way that both the self-induced secular terms and the 
mode-mode secular terms are simultaneously cancelled. As in the previous example, 
this means that the mode-mode interactions not only produce a slow variation in the 
amplitude of oscillation, but also a modified frequency shift owing to the mean 
deformation. To be specific, we again illustrate results by considering a specific case, 
w, = 2w4. Then, it can be seen from (5.14) and (5.16) that the conditions for 
elimination of secular behaviour are 

where 
5w; 15yw;+ lO(3y- 1 )  15 

, B 2 = - - ,  
2 4 4  4w0 

B, = + 
6 ( ~ :  -u&) OJ, 

(5.36) 

(5.37) 

866225 225 
1 9 3 1 1 6 ~ ~  4uiw,’ 

B, = +- 675 B4=-, 
2w4 

with an initial condition al, .(O) = [(n+ l)A,] i/wn. To facilitate the solution of these 
equations, we write the complex functions al, , and al, in terms of their amplitude 

i M O ( 7 )  exp (ioO(7)), = =4(7) exp (i@4(7)), (5.38) and phase 
El, ,  = 

whereM,,M,, 0, and 8, are real functions of 7. On substituting (5.38) into (5.36) and 
(5.37), we have 

aM, a7 = - B 2 x  cos ( 2 0 ,  - @,), ?!!! a7 = B4MOM4 cos ( 2 0 ,  - @,I, (5.39) 

a@, 
a7 a7 MOO” = --B,Ho-B2~sin(28,-0,) ,  - - - -B, -B,M, sin (20,- 0,). 

(5.40) 

Then, the complete solutions for the radial mode of oscillation and the P, oscillation 
mode can be expressed as 

al, ,(t, 7) = a:, -H,(T) sin{w, t +  O, (r ) } ,  (5.41) 

(5.42) 

for n = 0,4. The solutions for the other oscillation modes remain unchanged as in 
(5.18) and (5.19). 
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7 

FIGURE 7. Amplitude modulations as a function of the slow timescale 7 a t  the resonant state 
= 20 ,  for n = 4, M,,(O) =M4(0) = 1 and y = 1: (a )  radial mode; (b )  P,-mode. The radial and 

P,-mode oscillate about 30 and 15 cycles, respectively, during time interval AT = 1 for B = 0.1. 

In order to examine the energy transfer mechanism for this resonance case, we 
consider several different sets of the initial condition (Mo(0) ,M,(O)), 

Let us first consider the case forM,(O) = M 4 ( 0 )  = 1 (i.e. A ,  = o,/(n+ 1 ) ;  n = 0,4). 
The slowly varying amplitude functions M ,  and M4 for this initial condition are 
plotted as a function of the slow timescale r in figure 7. It can easily be seen that the 
two oscillation modes are sustained by exchanging their energy continuously. This 
is quite different behaviour from the same case for a quiescent fluid (i.e. oo = awn)  
where it was found that all of the initial energy of the shape deformation mode is 
eventually transferred to the radial mode. Further, as shown in figure 8, the two 
resonant modes experience a phase modulation which is not present in the absence 
of an external flow. The magnitudes of the phase modulation increase with 7 for both 
of the modes. More interestingly, when one oscillation mode undergoes phase 
modulation, the other mode oscillates without any phase change. This can be seen in 
figure 9 in which the phase diagram, 0, 11s. 0,) is plotted. 

In figures 10 and 11 the phase diagrams, (Mo,M,) and (0,,0,) are plotted for 
M,(O) = O,M,(O) = 1.  In this case each mode undergoes both an amplitude modu- 
lation on the periodic orbit ABACA . . . in the phase plane (M,,M,) and a phase modu- 
lation. It is thus obvious that a bubble which initially executes a P4 mode oscillation 
at  O(E)  can create a radial mode at the same order, O(e), and each mode is 
sustained continuously. On the other hand, it can be noted from (5.39) that when 
M 4 ( 0 )  = 0 and M,(O) = 1, M,(T) = 1 and M,(7)  = 0 at  all times. Thus, when a 
bubble initially executes only a radial mode oscillation at  O(F)  owing to an iso- 
tropic impulse in pressure, it cannot create a 1: oscillation at  O(E) .  In this case, 
the leading-order solution for the P4 mode occurs a t  O(E:) and can be determined 
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FIGURE 8. Phase modulations as a function of the slow timescale T a t  the resonant 
state for the same set of parameters as in figure 7 .  

from (5.13). This result is different from that obtained for the resonant case a t  either 
O(Q) when wo = w2 or at  O ( 2 )  when wo = w,. In the latter cases, one mode of 
oscillation at  O ( E )  always creates the other mode of oscillation at  the same order. 

In figure 12, the phase portraits, M4(7) 'us. Mo(7),  for various sets of initial 
conditions {Mo(0),M4(O)} are plotted. When u,, = 2w4, the ideal-gas bubble in the 
presence of the straining flow continuously executes the radial and P,-deformation 
oscillation, on the periodic orbit in the phase plane unless M4(0) = 0, in which case 
the bubble exhibits only the radial mode oscillation at all times. This is qualitatively 
different from the result obtained for a quiescent fluid (see figure 3). In that case, the 
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FIGURE 10. Phase diagram, M4(7) vs. M0(7) ,  for n = 4, M,,(O) = 0, M4(0) = 1, and y = 1. 

FIGURE 11. Phase diagram, 04(7) vs. O0(7), for the same set of parameters as in figure 10. 

shape oscillation loses its energy to the radial mode and eventually decays 
exponentially. On the other hand, in the presence of the ambient straining flow, the 
bubble shape cannot be spherical at all times owing to the non-uniform pressure 
distribution imposed by the external flow. The existence of a non-spherical steady- 
state shape leads to the qualitatively new effect described above. 

Finally, it is noteworthy that the general features of the results discussed in this 
section for bubble oscillations caused by an impulsive change in the pressure in the 
presence of a uniaxial flow, are not altered if we consider a step change in pressure, 
i.e. (4.26). For the step change, the leading-order solution is given by 

with 

(5.44) 

(5.45) 

instead of (5.4)-(5.6) for the impulse. Thus, the bubble oscillates around a new 
steady-state shape a;, n- (n+ 1)An/w2, with an amplitude (n+ 1)A,/w2,. 
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FIGIJRE 12. Phase diagram, M4(7) us. M0(7),  for various sets of initial conditions {Xo(0 ) ,M4(O)} :  
0,  initial point and the arrows indicate the initial direction of the periodic orbits. 

6.  Conclusion 
Small-amplitude oscillations of a bubble in an inviscid fluid have been studied 

using the standard method of domain perturbations. This analysis has led to the 
following conclusions. 

The steady-state analysis shows that the existence of a barrel-like steady-state 
shape a t  the leading order of approximation is independent of the inclusion of bubble 
compressibility. The steady-state solution also demonstrates the existence of a limit 
point at  a critical Weber number beyond which no solution exists on the branch of 
steady solutions that includes the spherical equilibrium state in the absence of the 
extensional flow. Furthermore, the critical Weber number for existence of a stable- 
steady solution is monotonically increased as the natural frequency wo of the radial 
mode of oscillation increases. Thus, a gas bubble becomes less stable as the 
compressibility increases. 

The analysis of small-amplitude oscillation caused by an impulsive or step change 
in the pressure at the bubble surface shows that the bubble motion can exhibit a 
resonant response owing to interactions between the deformation and radial modes 
of oscillation, and may also exhibit a frequency change when the bubble is either 
deformed or expanded/compressed away from its initial equilibrium volume. 

In  the absence of the straining flow, resonance takes place only at  O ( 2 )  for an 
ideal-gas bubble when w,, = 20, in the presence of an impulsive pressure change and 
when either wo = w ,  or wo = 2w, owing to a step change in the ambient pressure. The 
response analysis to the impulse in pressure predicts slowly varying amplitude 
envelopes that correspond to one-way energy transfer from the deformation mode 
to the radial mode of oscillation when o0 = 20,. On the other hand, the bubble 
dynamics in response to a step change in the pressure exhibits, in general, a 
continuous exchange of energy when either w,, = w, or wo = 20, because the bubble 
oscillates around a non-equilibrium volume and a non-spherical steady-state shape 
owing to the modified pressure distribution on the bubble surface. 

In the presence of a uniaxial straining flow, the self-induced secularity always 
arises at from the non-spherical deformed shape, and a shape oscillation at O(E)  
induced by a pressure change a t  the same order will generate a radial mode of 
oscillation at O(Q) which is considerably stronger than the result [i.e. O(e2)]  obtained 
in the absence of the flow. On the other hand, when wo = w 2 ,  resonance occurs a t  O(d )  
owing to the interaction of the volume oscillation a t  O ( E )  and the undisturbed 
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extensional flow at  O(&). In this case, a shape deformation at O ( E )  will create a radial 
mode of oscillation of O(s) ,  and vice versa. Further, when either wo = w, or wo = 2w,, 
resonance appears at O ( 2 )  owing to the combined effects of mode-mode interactions 
and the existence of the non-spherical steady-state shape in the straining flow. For 
both resonance cases, the shape deformation mode is sustained continuously by 
exchanging energy with the radial mode, and we find not only the slowly varying 
amplitude indicated above, but also a phase modulation. Further, in the presence of 
flow, the general features of the solution are not altered when we replace an impulse 
in the pressure by a step change. 

The present work was performed at  the University of California, Santa Barbara 
during Professor Yang’s leave in 1990-91 under partial support of the Korea Science 
and Engineering Foundation. The work has also been supported by grants to L. G. 
Leal from the Fluid Dynamics Programs at ONR and NSF. 
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